

Contents
I. The Team 2

II. Executive Summary 3

1. Purpose 3

2. Motivation 3

3. Goal 3

III. Requirements 4

IV. Solution Architecture 5

1. Data Storage for Initial Dataset 5

2. User Interface 5

3. High Level Design and Component Interactions for the Proposed System 6

4. Workflow 6

5. Version Control 6

6. Deployment 7

V. Design 8

1. Data Processing 8

2. Training the Model 8

3. Testing and Performance 8

4. User Interface and Deployment 9

5. Risk Management 9

VI. Model Development 10

1. Data Exploration 10

2. Data Preprocessing 11

3. Models Tested 12

4. Final Model 13

5. Final Model Metrics 14

6. Model Building Tools 14

VII. Application of Software Engineering 15

1. Process 15

2. Software Engineering and Project Management Tools 15

VIII. Conclusion 18

IX. References 19

I. The Team

Alex Pataky

Heather Akers-Healy

Jacob Miller

Matt Agone

Susan George

II. Executive Summary

1. Purpose

The purpose of this project has been to follow a typical software life cycle model from beginning

through end, while improving an existing machine learning model to classify Amazon reviews using
sentiment analysis. OpenUp Agile methodology has been followed. The wrapping of the final
optimized model in a user-friendly interface is discussed, to allow quick and easy positive/negative

predictions to new review text.

2. Motivation

Customer opinion is vital in drawing useful insights, improving products and services, making

informed decisions, and taking actionable steps. Sentiment analysis categorizes the unstructured
data from customer perceptions driving branding and marketing. An automated solution for
categorizing Amazon reviews by sentiment will allow greater flexibility for our customers in utilizing

reviews, ultimately making it easier for consumers to glean product information without reading

excessive amounts of reviews.

3. Goal

The goal of the project has been to improve the accuracy and reliability of the existing machine
learning model by following a typical software life cycle process. The original model made
predictions with an accuracy of ~60%, which is no better than random guessing when taking into

account the spread of the data. The original model exclusively predicts a rating of 1.0, which

accounts for 60% of the entire dataset, and therefore results in the 60% accuracy.

For our model, target labels have been transformed into binary (positive and negative)
sentiment. We have improved the overall accuracy, and achieved good performance on precision,

recall, F1 and AUC (area under the ROC curve).

III. Requirements

● An algorithm will consume text review data and return a predictive score for the numerical

rating of that review, either positive (1) or negative (0)
● The model will be a classification algorithm
● Training Model Accuracy will exceed 60% to improve on the original model

● The algorithm will be accessed via API on a public website
● The User Interface for this API must have a text box where users can paste a review text and

submit

● The API will return a score within 1 second after the review is submitted, or the page will
update with a progress bar if the process is delayed

● The User Interface will make the predicted binary score available to the user

IV. Solution Architecture

For the term project, our solution architecture is limited to MS Azure ML Studio. We

delivered our improved model and outputs via ML Studio directly.

In addition, we have drawn out what the architecture might look like for a production
deployment, where we would have users interact with a simple UI attached to API endpoint. In
the UI, users can input review text and get a “pos/neg” sentiment returned. We would have our

reference data in Azure storage and use ML Studio to build the model. The model and API would
be deployed using an AKS (Azure Kubernetes Service), since we want to have a real-time

interaction and response.

1. Data Storage for Initial Dataset

Azure Storage - ML Studio (Comma Separated Value File)

Data is run through model hosted on Azure

2. User Interface

UI for this Proof of Concept: outputs via Azure ML Studio

Proposed production UI: Simple UI attached to API endpoint where user can input review text

and get a “pos/neg” sentiment returned

3. High Level Design and Component Interactions for the Proposed System

Architectures based on MS reference diagrams at:

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-reco
mmendation
and

https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/movie-recommenda

tions.

Our model differs in that we are not using Databricks or Cosmos DB, because we are using the

functionality within Azure ML Studio to handle any transformations.

4. Workflow

5. Version Control

GitHub branching and merging is leveraged for the development collaboration and

version control of the project website.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/movie-recommendations
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/movie-recommendations

6. Deployment

Using Azure we will deploy the model via a web service. The web service provides an API
endpoint which requires the endpoint in the request header and the review text in the request

body. The response will include the predicted score for that review as a binary response, 1 or 0.

Since this model will be publicly available, neither tokens nor keys will be required to

access the API from the UI.

V. Design

1. Data Processing

Targets were converted into binary outcomes. Original data contained six possible ratings (0-5
stars, which were translated to ratings of 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 to appropriately feed into the
algorithm), some of which were infrequent or non-existent, so a threshold was set at 0.7: scores

greater than 0.7 were given a positive sentiment while scores less than 0.7 were given a negative
sentiment. This skewed threshold was selected because the scores were largely skewed towards the

higher ratings (1.0, 0.8).

An SQL transformation was applied to create the threshold for a positive or negative review.

The review text was preprocessed to force the text into a more digestible format for model
training. Stop words and extraneous text such as email addresses introduce noise to a text mining

process. The comment data was cleansed before the model was trained.

The input text is fed through the Azure “Extract Key Phrases” module so that the model will

focus on the more meaningful text within the review data.

Latent Dirichlet Allocation is applied to split the input review data into similar groups, to aid in

categorizing the text as a predictor of a rating.

2. Training the Model

A model was tested using Two-class Support Vector Machine. This algorithm was chosen

because it is a convenient and well-researched algorithm for predicting binary outcomes. Another
model was tested with Logistic Regression, which appeared to offer superior accuracy for the

binary-formatted data.

Two-class Decision Jungle also looked promising as a high performance classifier and is the

algorithm chosen for the final model.

3. Testing and Performance

Our initial iterations of binary classification models, as tested by running on Azure, had more

success than the initially delivered model. Some models were getting a low number of accurate

negative predictions, whereas the original model only predicted ratings in the highest category.

Various model assessment measures were used to aid in the final model selection. This includes

the AUC, F1, Precision and Recall scores related to the ROC curve, as well as the model’s general

accuracy.

The final model utilizes Synthetic Minority Over-sampling Technique (SMOTE) to rebalance the
classes by synthetically generating additional samples of the negative reviews. This was key to the

high improvement of performance in the final model.

4. User Interface and Deployment

Design and Test Interface:

The UI in use is Azure ML Studio directly.

Intended Production Use:

The model would be deployed on the web using Azure Kubernetes Service (AKS) with a user-friendly

API on top. AKS is a good choice for real-time inference executions, which will be ideal in a

production scenario.

UI functionality:

The user enters a text review, and our model returns the binary prediction.

5. Risk Management

VI. Model Development

1. Data Exploration
The raw dataset contains an imbalance of targets. Perfect review scores represent 60% of the total
dataset, and targets in the top two buckets that are transformed into our positive label represent

nearly 80% of the data.

Score distribution:

Conducting sentiment analysis confirms that the imbalance exists in the review text as well.

Positive words represent a 4:1 majority after removing stop words.

Negative Words Positive Words Overall Sentiment

49,711 197,334 147,623

Word clouds created on our two label categories validate that the vocabulary used most frequently in
the review text is indeed different. There is some crossover where positive words are used in negative

reviews, as expected, but generally the word clouds are in line with expectations.

2. Data Preprocessing

● Targets were converted into binary outcomes. Original data contained six possible ratings (0-5
stars), some of which were infrequent or non-existent, so a threshold was set at 0.7: scores

Word Sentiment
love positive

well positive

worth positive

super positive

easy positive

miss negative

swipe negative

issue negative

awful negative

bug negative

ruined negative

free positive

like positive

awful negative

bugs negative

greater than 0.7 were given a positive sentiment while scores less than 0.7 were given a

negative sentiment.

■ This skewed threshold was selected because the scores were largely skewed towards

the higher ratings (1.0, 0.8).

■ A SQL transformation was applied to create the threshold for a positive or negative

review.

● The review text was preprocessed to force the text into a more digestible format for model

training. Stop words and extraneous text such as email addresses introduce noise to a text
mining process. The comment data was cleansed before the model was trained.

● The input text is fed through the Azure “Extract Key Phrases” module so that the model will

focus on the more meaningful text within the review data
● Latent Dirichlet Allocation is applied to split the input review data into similar groups, to aid in

categorizing the text as a predictor of a rating

3. Models Tested

Various models were researched and tested through Azure. One model utilized feature

hashing and text preprocessing. Two other models in development used Latent Dirichlet
Allocation. The final model combines text preprocessing, Extracting Key Phrases From Text,

Latent Dirichlet Allocation and SMOTE with a Two-class Decision Jungle algorithm.

Some of the preliminary binary classification model iterations can be seen below. Azure

ML Studio allowed for quick and easy iterating so we were able to quickly decide on one

algorithm family (2-Class Decision Jungle) and focus on optimization.

4. Final Model

As stated previously, we researched and experimented with various two class algorithms
and data processing steps such as feature hashing and text preprocessing. After extensive

testing and evaluation, we chose a model using the Decision Jungle algorithm with an SQL
transformation to split the reviews into binary classes, and the text preprocessing, Extracting

Key Phrases From Text, Latent Dirichlet Allocation and SMOTE modules from Azure.

5. Final Model Metrics

At a .5 threshold, the final model achieves accuracy of .926, Precision and AUC of 1.00, Recall of

.863, and F1 of .926.

6. Model Building Tools

All models were developed and tested in Microsoft Azure Machine Learning Studio. Additional

research was done to explore and evaluate machine learning methods and algorithms.

VII. Application of Software Engineering

1. Process

Open Unified Process (OpenUP) was used for the software engineering lifecycle of the
project. The project progressed in bi-weekly sprints through the major phases of Inception,
Elaboration, Construction and Transition. The major artifacts are the Project Proposal (with
detailed requirements), Architecture & Design, the Final Model, Project Presentation and the

Project Report.

Phase Tasks and Artifacts

2. Software Engineering and Project Management Tools

Trello (https://trello.com/b/UvRzi2Zz/dsci644-team-b-term-project)

Google Drive (https://drive.google.com/drive/u/1/folders/0AP8vltTBmTtTUk9PVA)

Slack (https://app.slack.com/client/TP0FX0QAU/C019MGABM6H)

Webex/Zoom

Microsoft Azure ML Studio

Github (https://github.com/MattAgone/DSCI644-Team-B-Project/)

Project Website (https://hrahhrah.github.io/)

https://trello.com/b/UvRzi2Zz/dsci644-team-b-term-project
https://drive.google.com/drive/u/1/folders/0AP8vltTBmTtTUk9PVA
https://app.slack.com/client/TP0FX0QAU/C019MGABM6H
https://github.com/MattAgone/DSCI644-Team-B-Project/
https://hrahhrah.github.io/
https://hrahhrah.github.io/

VIII. Conclusion

Team B has successfully completed the project. A new classification algorithm has been
constructed and the software design for the implementation is in place. The requirements have been
satisfied per the customers and outstanding risks have been documented and mitigated. The team used

software engineering principles such as OpenUp to organize the work, and software such as GitHub and

Trello to manage the project.

As students, this project provided a good opportunity to create and manage a data science
project through the software life cycle. The GitHub repositories and Trello project management boards

to organize the work with a website to communicate externally created an environment where
collaboration was a necessity. There were less opportunities for members to work independently and
stitch the project together this way, which is a positive thing. Microsoft ML Studio as well as a poorly

performing model also allowed us to learn a new tool and experiment with various concepts without
getting totally mired in the potential pitfalls of model tuning. Working together while spread out across
different states and time zones was another opportunity to learn remote collaboration, a particularly

useful skill in 2020.

IX. References

1. Mukherjee, A., Mukhopadhyay, S., Panigrahi, P. and Goswami, S. (2019). ‘Utilization of

Oversampling for multiclass sentiment analysis on Amazon Review Dataset,’ IEEE 10th
International Conference on Awareness Science and Technology (iCAST), Morioka, Japan. pp.
1-6, doi: 10.1109/ICAwST.2019.8923260.

2. Yang, S., Zhang, H. (2018). 'Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic
Model and Sentiment Analysis'. World Academy of Science, Engineering and Technology, Open
Science Index 139, International Journal of Computer and Information Engineering, 12(7), 525 -

529.
3. Elreedy, D., Atiya, A. (2019). ‘A Comprehensive Analysis of Synthetic Minority Oversampling

Technique (SMOTE) for handling class imbalance’, Information Sciences, Volume 505, 2019,

https://doi.org/10.1016/j.ins.2019.07.070.
4. Mohammed, A., Hassan, M., Kadir, D. (2020). ‘Improving Classification Performance for a Novel

Imbalanced Medical Dataset using SMOTE Method’. International Journal of Advanced Trends in

Computer Science and Engineering. 9. 3161-3172. 10.30534/ijatcse/2020/104932020.
5. Microsoft. (2019, May 06). ML Studio (classic): Two-Class Decision Jungle - Azure. Retrieved

November 19, 2020, from

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-
decision-jungle

6. AzureML Team for Microsoft. (2014, September 02). Compare Binary Classifiers. Retrieved

November 19, 2020, from
https://gallery.azure.ai/Experiment/b2bfde196e604c0aa2f7cba916fc45c8

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-decision-jungle
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-class-decision-jungle
https://gallery.azure.ai/Experiment/b2bfde196e604c0aa2f7cba916fc45c8

