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II. Executive Summary 
 

1. Purpose 
 

The purpose of this project has been to follow a typical software life cycle model from beginning                 

through end, while improving an existing machine learning model to classify Amazon reviews using              
sentiment analysis. OpenUp Agile methodology has been followed. The wrapping of the final             
optimized model in a user-friendly interface is discussed, to allow quick and easy positive/negative              

predictions to new review text. 

 

2. Motivation 
 

Customer opinion is vital in drawing useful insights, improving products and services, making             

informed decisions, and taking actionable steps. Sentiment analysis categorizes the unstructured           
data from customer perceptions driving branding and marketing. An automated solution for            
categorizing Amazon reviews by sentiment will allow greater flexibility for our customers in utilizing              

reviews, ultimately making it easier for consumers to glean product information without reading             

excessive amounts of reviews. 

 

3. Goal 
 

The goal of the project has been to improve the accuracy and reliability of the existing machine                 
learning model by following a typical software life cycle process. The original model made              
predictions with an accuracy of ~60%, which is no better than random guessing when taking into                

account the spread of the data. The original model exclusively predicts a rating of 1.0, which                

accounts for 60% of the entire dataset, and therefore results in the 60% accuracy. 

For our model, target labels have been transformed into binary (positive and negative)             
sentiment. We have improved the overall accuracy, and achieved good performance on precision,             

recall, F1 and AUC (area under the ROC curve). 

 

 

 

 

 

 



III. Requirements 
 

● An algorithm will consume text review data and return a predictive score for the numerical               

rating of that review, either positive (1) or negative (0) 
● The model will be a classification algorithm 
● Training Model Accuracy will exceed 60% to improve on the original model 

● The algorithm will be accessed via API on a public website 
● The User Interface for this API must have a text box where users can paste a review text and                   

submit 

● The API will return a score within 1 second after the review is submitted, or the page will                  
update with a progress bar if the process is delayed 

● The User Interface will make the predicted binary score available to the user 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV. Solution Architecture 
 

For the term project, our solution architecture is limited to MS Azure ML Studio. We               

delivered our improved model and outputs via ML Studio directly. 

In addition, we have drawn out what the architecture might look like for a production               
deployment, where we would have users interact with a simple UI attached to API endpoint. In                
the UI, users can input review text and get a “pos/neg” sentiment returned. We would have our                 

reference data in Azure storage and use ML Studio to build the model. The model and API would                  
be deployed using an AKS (Azure Kubernetes Service), since we want to have a real-time               

interaction and response. 

 

 

 

1. Data Storage for Initial Dataset 
 

Azure Storage - ML Studio (Comma Separated Value File) 

Data is run through model hosted on Azure 

 

2. User Interface 
 

UI for this Proof of Concept: outputs via Azure ML Studio  



Proposed production UI: Simple UI attached to API endpoint where user can input review text 

and get a “pos/neg” sentiment returned 

 

3. High Level Design and Component Interactions for the Proposed System 
 

Architectures based on MS reference diagrams at: 

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-reco
mmendation  
and 

https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/movie-recommenda

tions.  

 
Our model differs in that we are not using Databricks or Cosmos DB, because we are using the 

functionality within Azure ML Studio to handle any transformations.  

 

4. Workflow 
 

 

 

5. Version Control 
 

GitHub branching and merging is leveraged for the development collaboration and 

version control of the project website. 

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/movie-recommendations
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/movie-recommendations


  

 

6. Deployment 
 

Using Azure we will deploy the model via a web service. The web service provides an API                 
endpoint which requires the endpoint in the request header and the review text in the request                

body. The response will include the predicted score for that review as a binary response, 1 or 0.  

Since this model will be publicly available, neither tokens nor keys will be required to               

access the API from the UI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

V. Design 
 

1. Data Processing 
 

Targets were converted into binary outcomes. Original data contained six possible ratings (0-5             
stars, which were translated to ratings of 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 to appropriately feed into the                  
algorithm), some of which were infrequent or non-existent, so a threshold was set at 0.7: scores                

greater than 0.7 were given a positive sentiment while scores less than 0.7 were given a negative                 
sentiment. This skewed threshold was selected because the scores were largely skewed towards the              

higher ratings (1.0, 0.8). 

An SQL transformation was applied to create the threshold for a positive or negative review.  

The review text was preprocessed to force the text into a more digestible format for model                
training. Stop words and extraneous text such as email addresses introduce noise to a text mining                

process. The comment data was cleansed before the model was trained. 

The input text is fed through the Azure “Extract Key Phrases” module so that the model will                 

focus on the more meaningful text within the review data. 

Latent Dirichlet Allocation is applied to split the input review data into similar groups, to aid in                 

categorizing the text as a predictor of a rating. 

 

2. Training the Model 
 

A model was tested using Two-class Support Vector Machine. This algorithm was chosen             

because it is a convenient and well-researched algorithm for predicting binary outcomes. Another             
model was tested with Logistic Regression, which appeared to offer superior accuracy for the              

binary-formatted data.  

Two-class Decision Jungle also looked promising as a high performance classifier and is the              

algorithm chosen for the final model. 

 

3. Testing and Performance 
 

Our initial iterations of binary classification models, as tested by running on Azure, had more               

success than the initially delivered model. Some models were getting a low number of accurate               

negative predictions, whereas the original model only predicted ratings in the highest category. 



Various model assessment measures were used to aid in the final model selection. This includes               

the AUC, F1, Precision and Recall scores related to the ROC curve, as well as the model’s general                  

accuracy. 

The final model utilizes Synthetic Minority Over-sampling Technique (SMOTE) to rebalance the            
classes by synthetically generating additional samples of the negative reviews. This was key to the               

high improvement of performance in the final model. 

 

4. User Interface and Deployment 
 

Design and Test Interface: 

The UI in use is Azure ML Studio directly. 

 

Intended Production Use: 

The model would be deployed on the web using Azure Kubernetes Service (AKS) with a user-friendly                

API on top. AKS is a good choice for real-time inference executions, which will be ideal in a                  

production scenario. 

 

UI functionality:  

The user enters a text review, and our model returns the binary prediction. 

 

5. Risk Management 
 

 

 

 

 



 

 

VI. Model Development 
 

1. Data Exploration 
The raw dataset contains an imbalance of targets. Perfect review scores represent 60% of the total 
dataset, and targets in the top two buckets that are transformed into our positive label represent 

nearly 80% of the data.  

Score distribution: 

 

 

Conducting sentiment analysis confirms that the imbalance exists in the review text as well. 

Positive words represent a 4:1 majority after removing stop words.  

 

 

Negative Words Positive Words Overall Sentiment 

49,711 197,334 147,623 



 

 

Word clouds created on our two label categories validate that the vocabulary used most frequently in 
the review text is indeed different. There is some crossover where positive words are used in negative 

reviews, as expected, but generally the word clouds are in line with expectations. 

 

 

2. Data Preprocessing 
 

● Targets were converted into binary outcomes. Original data contained six possible ratings (0-5             
stars), some of which were infrequent or non-existent, so a threshold was set at 0.7: scores                

Word Sentiment 
love positive 

well positive 

worth positive 

super positive 

easy positive 

miss negative 

swipe negative 

issue negative 

awful negative 

bug negative 

ruined negative 

free positive 

like positive 

awful negative 

bugs negative 



greater than 0.7 were given a positive sentiment while scores less than 0.7 were given a                

negative sentiment. 

■ This skewed threshold was selected because the scores were largely skewed towards             

the higher ratings (1.0, 0.8). 

■ A SQL transformation was applied to create the threshold for a positive or negative               

review. 

● The review text was preprocessed to force the text into a more digestible format for model                

training. Stop words and extraneous text such as email addresses introduce noise to a text               
mining process. The comment data was cleansed before the model was trained. 

● The input text is fed through the Azure “Extract Key Phrases” module so that the model will                 

focus on the more meaningful text within the review data 
● Latent Dirichlet Allocation is applied to split the input review data into similar groups, to aid in                 

categorizing the text as a predictor of a rating 

 

3. Models Tested 
 

Various models were researched and tested through Azure. One model utilized feature            

hashing and text preprocessing. Two other models in development used Latent Dirichlet            
Allocation. The final model combines text preprocessing, Extracting Key Phrases From Text,            

Latent Dirichlet Allocation and SMOTE with a Two-class Decision Jungle algorithm. 

Some of the preliminary binary classification model iterations can be seen below. Azure             

ML Studio allowed for quick and easy iterating so we were able to quickly decide on one                 

algorithm family (2-Class Decision Jungle) and focus on optimization. 

 



 

4. Final Model 
 

As stated previously, we researched and experimented with various two class algorithms            
and data processing steps such as feature hashing and text preprocessing. After extensive             

testing and evaluation, we chose a model using the Decision Jungle algorithm with an SQL               
transformation to split the reviews into binary classes, and the text preprocessing, Extracting             

Key Phrases From Text, Latent Dirichlet Allocation and SMOTE modules from Azure. 



 

 

 

5. Final Model Metrics 
 

At a .5 threshold, the final model achieves accuracy of .926, Precision and AUC of 1.00, Recall of 

.863, and F1 of .926. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Model Building Tools 
 

All models were developed and tested in Microsoft Azure Machine Learning Studio. Additional 

research was done to explore and evaluate machine learning methods and algorithms. 

 

VII. Application of Software Engineering 
 

1. Process 
 

Open Unified Process (OpenUP) was used for the software engineering lifecycle of the             
project. The project progressed in bi-weekly sprints through the major phases of Inception,             
Elaboration, Construction and Transition. The major artifacts are the Project Proposal (with            
detailed requirements), Architecture & Design, the Final Model, Project Presentation and the            

Project Report. 

 

Phase Tasks and Artifacts 



 

 

 

2. Software Engineering and Project Management Tools 
 

Trello (https://trello.com/b/UvRzi2Zz/dsci644-team-b-term-project) 

Google Drive (https://drive.google.com/drive/u/1/folders/0AP8vltTBmTtTUk9PVA) 

Slack (https://app.slack.com/client/TP0FX0QAU/C019MGABM6H) 

Webex/Zoom 

Microsoft Azure ML Studio 

Github (https://github.com/MattAgone/DSCI644-Team-B-Project/) 

Project Website (https://hrahhrah.github.io/)  

https://trello.com/b/UvRzi2Zz/dsci644-team-b-term-project
https://drive.google.com/drive/u/1/folders/0AP8vltTBmTtTUk9PVA
https://app.slack.com/client/TP0FX0QAU/C019MGABM6H
https://github.com/MattAgone/DSCI644-Team-B-Project/
https://hrahhrah.github.io/
https://hrahhrah.github.io/


 

VIII. Conclusion 
 

Team B has successfully completed the project. A new classification algorithm has been             
constructed and the software design for the implementation is in place. The requirements have been               
satisfied per the customers and outstanding risks have been documented and mitigated. The team used               

software engineering principles such as OpenUp to organize the work, and software such as GitHub and                

Trello to manage the project.  

As students, this project provided a good opportunity to create and manage a data science                
project through the software life cycle. The GitHub repositories and Trello project management boards              

to organize the work with a website to communicate externally created an environment where              
collaboration was a necessity. There were less opportunities for members to work independently and              
stitch the project together this way, which is a positive thing. Microsoft ML Studio as well as a poorly                   

performing model also allowed us to learn a new tool and experiment with various concepts without                
getting totally mired in the potential pitfalls of model tuning. Working together while spread out across                
different states and time zones was another opportunity to learn remote collaboration, a particularly              

useful skill in 2020. 
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